Category Archives: IT Band

Physiology of tapering – in brief

It’s about that time of year where you will be racing soon if you haven’t already.  Leading up to your race, you will probably want to know or learn about tapering.  This excerpt from Tapering and Peaking for Optimal Performance is reprinted with permission by Human Kinetics.

Figure 1.1

Figure 1.1

“The
main aim of the taper is to reduce the negative physiological and
psychological impact of daily training. In other words, a taper should
eliminate accumulated or residual fatigue, which translates into
additional fitness gains. To test this assumption, Mujika and
colleagues (1996a) analyzed the responses to three taper segments in a
group of national- and international-level swimmers by means of a
mathematical model, which computed fatigue and fitness indicators from
the combined effects of a negative and a positive function
representing, respectively, the negative and positive influence of
training on performance (figure 1.1). As can be observed in figure 1.1,
NI (negative influence) represents the initial decay in performance
taking place after a training bout and PI (positive influence) a
subsequent phase of supercompensation.

Figure 1.2

Figure 1.2

The
mathematical model indicated that performance gains during the tapering
segments were mainly related to marked reductions in the negative
influence of training, coupled with slight increases in the positive
influence of training (figure 1.2). The investigators suggested that
athletes should have achieved most or all of the expected physiological
adaptations by the time they start tapering, eliciting improved
performance levels as soon as accumulated fatigue fades away and
performance-enhancing adaptations become apparent.

The conclusions of Mujika and colleagues (1996a), drawn from real
training and competition data from elite athletes but attained by
mathematical procedures, were supported by several biological and
psychological findings extracted from the scientific literature on
tapering. For instance, in a subsequent study on competitive swimmers,
Mujika and colleagues (1996d) reported a significant correlation
between the percentage change in the testosterone-cortisol ratio and
the percentage performance improvement during a 4-week taper. Plasma
concentrations of androgens and cortisol have been used in the past as
indexes of anabolic and catabolic tissue activities, respectively
(Adlercreutz et al. 1986). Given that the balance between anabolic and
catabolic hormones may have important implications for recovery
processes after intense training bouts, the testosterone-cortisol ratio
has been proposed and used as a marker of training stress (Adlercreutz
et al. 1986, Kuoppasalmi and Adlercreutz 1985). Accordingly, the
observed increase in the testosterone-cortisol ratio during the taper
would indicate enhanced recovery and elimination of accumulated
fatigue. This would be the case regardless of whether the increase in
the testosterone-cortisol ratio was the result of a decreased cortisol
concentration (Bonifazi et al. 2000, Mujika et al. 1996c) or an
increased testosterone concentration subsequent to an enhanced
pituitary response to the preceding time of intensive training (Busso
et al. 1992, Mujika et al. 1996d, Mujika et al. 2002a).”