Category Archives: Swim

5 steps to creating the perfect core workout program

The reason for posting this is that the core is the link between the lower and upper body. If it’s a weak link, performance will suffer despite any other training. Think swimming – what turns your chest on edge while breathing and back again, your core. Running, what stabilizes your back, your core. It’s important and should not be overlooked.

This excerpt is from the book, Delavier’s Core Training Anatomy. It’s published with permission of Human Kinetics. Purchase this book from Human Kinetics and help keep MyTriathlonTraining.com in business!

Set your goals.

The very first step in creating your core workout program is to be specific when defining your goals. Are you working out for these reasons?

  • To get a six-pack
  • To get a slimmer waist
  • To maintain your cardiovascular health
  • and fitness
  • To increase your athletic performance

Often, your goals may be a combination of several of the items listed. However, if you do not define your goals well, it will be difficult to establish an optimal program. Write down your goals on paper so that you can read them before every workout.

Then, you need to quantify your goals. For example, I want to

  • be able to see my abs in 3 months,
  • lose 2 inches off my waist in 2 months, and
  • double the number of sets I can do in 10 minutes to increase my endurance within 15 days.

The time frame and amount of progress for your goals must be realistic. Keep in mind that no one ever progresses as fast as desired. You might often feel that you have hit a plateau. But with a good program, a true plateau is rare. By quantifying your goals and creating monthly milestones, you will more easily be able to gauge your progress. Each step you achieve will serve as motivation to continue exercising. We provide some typical programs in Continue reading

Recognizing and preventing common triathlon-related injuries

This excerpt is from the book, Triathlon Anatomy. It’s published with permission of Human Kinetics. Please also read terms of use.

Prevention and Recognition of Injuries

Rest, which by nature triathletes are inherently bad at, is an integral part of the healing process. This is when the body heals itself and gets stronger, whether you are taking a day or a few weeks off from working out or reducing the intensity or volume of your workouts. Prevention techniques that assist with healing, including stretching and specific strengthening, are often overlooked but are an essential part of triathlon training.

Injuries are not an act of nature. They indicate that the athlete has reached a breakdown point at which the body can no longer respond in a positive fashion and heal the injury. The body is pushed past its reparative capabilities and begins to develop signs and symptoms of injury. One of the hallmark symptoms of injury is pain. We all have experienced discomfort when working out, but when is it bad to push through the discomfort? Pain can be defined as an unpleasant sensation that is often associated with damage to the body. What about the sayings “Pain is just weakness leaving the body” and “No pain, no gain”? These proverbs are fun to say but if practiced can lead you down the path of chronic injury.

Any discomfort may be an early warning sign of injury. Discomfort that begins with an activity but goes away as you warm up may be an acceptable symptom you are able to train through with appropriate modifications. However, discomfort that continues through the activity should be a clear warning sign that something is not right, and activity should be discontinued. Discomfort that persists after the activity, does not respond to the basic treatment of RICE (rest, ice, compression, elevation), and affects Continue reading

Looking for something new to enhance training?

This is from the author of Breathe Strong, Perform Bette. It’s published with permission of Human Kinetics

“For every sport and fitness category described in the following sections, inspiratory muscle training (IMT) will improve exercise tolerance or performance by delaying the onset of the inspiratory muscle metaboreflex and reducing the perception of breathing and whole-body effort. These sections summarize the additional benefits.

Exercise and Fitness

For those engaged in general fitness training, IMT will make exercise feel easier, which enables people to maintain higher exercise intensities for longer durations. This enhances the fitness gains and caloric expenditure of general fitness conditioning.

The rate of perceived recovery will also improve, which will enhance the ability to maintain the tempo of activity during exercise-to-music classes and the intensity of circuit training. The enhancement of core stability will reduce injury risk and improve weight training.

Weight trainers will benefit from improved core stability, which may produce an improvement in maximal lift performances for lifts where trunk stiffness and stability contribute to the ability to overcome a load (e.g., Olympic lifts).

Endurance Sports

A wide range of endurance sports are reviewed here, but the principles that have been applied can be adapted to suit any sport.

Running

IMT will improve the runner’s ability to maintain a deeper, slower breathing pattern. It will also enhance the efficiency of respiratory and locomotor coupling (entrainment), enhance core stability (reducing spinal loading and improving leg drive efficiency), and improve postural control (balance). IMT may also reduce the risk of developing a side stitch.

Cycling

IMT will improve the cyclist’s ability to maintain a deeper, slower breathing pattern. It will also enhance the efficiency of respiratory and locomotor coupling (entrainment) and enhance core stability (reducing spinal loading and knee stress and improving pedaling efficiency). IMT will also allow the inspiratory muscles to operate more comfortably in extreme cycling positions (e.g., when using aerobars).

Swimming

The addition of IMT to swim and other aquatic training will improve the swimmer’s ability to maintain a deeper, slower breathing pattern and will enhance the efficiency of respiratory and locomotor coupling (entrainment). IMT can also enhance the swimmer’s ability to inhale rapidly and to achieve and sustain high lung volumes. As a result, the swimmer’s body position and stroke mechanics will be improved. A decrease in the number of breaths per stroke will also be possible. In addition, the muscles of the trunk will be better able to meet the dual demands for breathing and providing propulsive force.

Those using scuba will also benefit from a deeper, slower breathing pattern, which reduces air use and extends cylinder wear time. Furthermore, free divers and surfers may also experience an improvement in breath-holding time. Breathing restrictions imposed by wet suits will also be easier to overcome or tolerate after IMT.

Multisport

The addition of IMT to multisport training will provide the benefits summarized for each component. Most triathlons involve a wet suit swim, and IMT will enhance the swimmer’s ability to breathe efficiently and comfortably. Furthermore, the unique breathing-related disruption that occurs during the transition from cycling to running will be alleviated.

Rowing

The addition of IMT to rowing training will improve the rower’s ability to maintain a deeper, slower breathing pattern; enhance the efficiency of respiratory and locomotor coupling (entrainment); and enhance core stability and trunk stiffness (reducing spinal loading and improving force transmission to the blade). Furthermore, improvements in intercostal muscle function and the ability to generate and maintain high intrathoracic pressure may reduce the risk of rib stress fractures. IMT will also allow the inspiratory muscles to operate more comfortably at the catch and finish positions.

Sliding Sports

People taking part in sliding sports have a number of factors influencing their performance, including the effects of altitude and the challenges associated with maintaining balance. IMT will improve their ability to maintain a deeper, slower breathing pattern. It will also enhance the efficiency of respiratory and locomotor coupling (entrainment), enhance core stability (reducing spinal loading and improving leg drive efficiency), and improve postural control (balance) and trunk stiffness. The ability to maintain aerodynamic postures for longer periods without the associated breathing discomfort is another benefit of IMT.

Hiking and Mountaineering

Hikers and mountaineers have to contend with the effects of altitude, the impact of carrying heavy backpacks, and the challenges associated with maintaining balance on unpredictable terrain. IMT will improve their ability to maintain a deeper, slower breathing pattern; enhance the efficiency of respiratory and locomotor coupling (entrainment); and enhance core stability (reducing spinal loading). The challenges to postural control (balance) imposed by carrying a backpack and by traveling on uneven terrain will be minimized by IMT, and trunk stiffness will be improved. In addition, the ability to overcome the resistance to normal breathing movements of the trunk that are induced by backpacks will be improved.

Team and Sprint Sports

Team sports are diverse in their challenges, but they all have three important factors in common: They involve repeated high-intensity efforts that drive breathing to its limits; they require the contribution of the upper body and the core-stabilizing system (e.g., fending off opponents, changing direction quickly, or passing objects to teammates); and they require tactical decision making at a time when the distraction from breathing discomfort is high. IMT will improve the rate of perceived recovery between sprints, which will enhance repeated sprint performance and the quality of interval training. These improvements in perceived recovery should enable players to maintain the intensity of their involvement in the match or game, rather than back off for a period of “cruising” recovery. In addition, the damping down of breathlessness will lessen the distraction that this sensation imposes on tactical decision making.

Improvements to core stability will advance a player’s effectiveness during physical interactions with opponents (e.g., tackling, fending off) and in activities such as kicking and throwing.

For contact sports and those that involve activities requiring the application of whole-body isometric forces (such as a rugby scrum), players will benefit from the increased ability of the inspiratory muscles to function as breathing muscles. This is important in situations where the demand for breathing is high but the requirement for maximal core-stabilizing activity is also present.

Finally, in those contact team sports requiring the use of mouth guards and other protective equipment, IMT can improve breathing comfort and reduce the risk of inspiratory muscle fatigue that results from the restrictions imposed by the equipment.

Racket, Striking, and Throwing Sports

Sports falling under this heading most commonly require the participants to use an implement to strike a ball—such as a racket (e.g., tennis, squash, badminton), club (e.g., golf), or bat (e.g., baseball, softball, cricket)—or they may be sports that involve throwing a ball (pitching and bowling). In the case of racket sports, the player is required to direct the ball within the bounds of the court using a range of strokes. Matches are fast paced, requiring speed, agility, and skill. In contrast, in sports such as golf or baseball, the player is able to square up to the ball or pitcher and is stationary as the ball is struck. These two scenarios create very different demands on the breathing muscles, but there are two common denominators: the involvement of the trunk musculature in providing a stable platform and in protecting the spine; the contribution of the entire trunk musculature to the task of accelerating a racket, club, bat, or arm.

After using IMT, players in racket sports will be able to maintain a higher tempo of performance during rallies, and they will experience a reduction in unforced errors. Rate of perceived recovery between rallies will also improve, which will enhance the ability to maintain and dictate the pace and tempo of the game. In addition, the damping down of breathlessness will lessen the distraction that this sensation imposes on tactical decision making. The enhancement of core stability and improved contribution of the trunk musculature to racket head speed and precision will increase the likelihood of aces and shots that are “winners,” as well as reduce the risk of injury.

Many of these sports require high levels of core stability and a contribution from the trunk musculature to the swinging of implements (such as clubs and bats) or the launching of projectiles (such as in field sports). Players in these sports will benefit from the enhanced function of the diaphragm and the enhanced contribution of the inspiratory accessory muscles to these movements. This will result in an increase in striking and throwing velocities. In addition, there will be a reduction in injury risk because of the enhanced spinal stability and the improved resistance of rib cage muscles to tearing.”

Training with a power meter

This is an excerpt from Cycling Fast. It’s published with permission of Human Kinetics.

“Training with a power meter is the current gold standard for measuring improvement in performance and setting standardized goals for workouts. A well-calibrated power meter provides an absolute measurement (in watts) of the power generated by the cyclist.

For comparison purposes, wattage is paired with body weight, normally taken in kilograms. For example, a 140-pound (64 kg) rider who produces 300 watts can be said to produce 4.69 watts per kilogram (W/kg; that is, 300 W divided by 64 kg). Similarly, a 170-pound (77 kg) rider who wants to achieve the same 4.69 watts per kilogram needs to produce 361 watts. Table 4.6 provides a list of the target wattage needed for each category of racing.

When you first start training and racing, owning a power meter may not be necessary. During the early stages of learning to race, you can perform workouts with a heart rate monitor and cadence sensor, or you can just ride by feel. These methods may be sufficient to help you show large gains in fitness. As time passes, gains in fitness may diminish without the use of outside methods for workout management, such as a power meter. Incremental improvements in cycling are known as “dialing it in.” Power meters are an excellent tool for helping athletes dial in their fitness as they mature in the sport. To see what a power meter looks like, refer to figure 4.3

Purchasing a power meter is an economic investment. You may find power meters that cost around US$400, but some may cost as much as US$2,500. Only a few companies develop power meters. Some power meters use the bottom bracket as the source for extrapolating power, others use the rear wheel hub to extrapolate power, while still others use wind velocity and rider drag to extrapolate power. Higher price does not necessarily mean a better power meter. Explore the available options by talking with other riders who own power meters, local bike shops, and your coach. This will help you find out which system works for you.



Power Training Zones
Knowing your sustained power (wattage) at a select time interval will give you guidelines for specific workouts. Standard time periods include 5 seconds, 1 minute, 5 minutes, and 20 minutes. Using a 20-minute sustained power test is the most common way to determine training zones. The five zones identified in table 4.7 will provide an effective platform for structured training.

The test described in this section will estimate your 20-minute sustained power (SP). Your 20-minute SP number may increase throughout the season as your fitness increases, or the way you achieve your 20-minute SP may change throughout the season (e.g., at 95 rpm instead of 85 rpm). Although not covered in this book, if you want to fine-tune your fitness, you can perform 5-second, 1-minute, and 5-minute SP tests. With this information, you can choose workouts that target and cover these time periods. For example, you can use sprint workouts to improve 5-second SP or intense on-the-bike strength workouts to improve 1-minute SP.

You must be fully rested before performing the 20-minute test. Make sure you read the instruction manual for your power meter to determine how to mark each interval; you can then review and record the data and wattages later. The best conditions for performing the test are on a flat road (or a road with a slight rise) with steady wind and limited traffic, traffic lights, and stop signs. A closed park road with few pedestrians is ideal. The test can also be performed on a stationary trainer (if the trainer provides even resistance throughout the duration of testing).

Before performing any maximum efforts, you need to be in good physical health as confirmed by a medical professional.

Test for 20-Minute Sustained Power

Warm-Up: 20 Minutes

Ride steady and easy in the warm-up with heart rates at less than 75 percent of maximum for 30 minutes. Near the end of the warm-up, perform one 5-minute (1 × 5 min) effort at 95 percent of what you estimate to be your time trial heart rate. Then perform active recovery—rolling at cadences between 70-85 rpm at <75 % of maximum heart rate (MHR)—for 5 minutes. (A discussion of MHR follows in the next section.) Next, perform three 1-minute (3 × 1 min) high-cadence (>100 rpm) efforts in the easiest gear. Perform active recovery for 1 minute between the 1-minute intervals. After the three 1-minute efforts are complete, perform active recovery for 4 minutes.

Actual Test: 20 Minutes

Mark interval and start a 20-minute all-out time trial effort with cadence at 85 to 95 rpm. For the first 3 minutes, ease into a time trial pace.

Record all test conditions, including the course, weather, wind, and temperature. Also record your diet for the day before and the morning of the test. During the test, you need to remain mentally focused. Pacing during testing is crucial—meaning building by increasing power throughout, as you would in intervals. Attempt to maintain the highest average watts for the test period.

Review your test using your power meter software. Label the test interval for the appropriate time period. The average wattage for the 20-minute time period is your SP for that time period.”

Cycling expert explains strategies for getting faster

This is an excerpt from Cycling Fast. It’s published with permission of Human Kinetics.

“Climbs and descents make or break cycling races, according to cycling coach Robert Panzera. In his upcoming book, Cycling Fast (Human Kinetics, May 2010), Panzera covers hills and all elements that can make a cyclist faster, from conditioning to nutrition and key skills.

Panzera says even small climbs make a difference the closer a cyclist gets to the finish line. ‘Climbs are additive, meaning a 200-foot gain in elevation may not seem like much in the first few miles, but near the finish, it can seem like a mountain.’ He advises cyclists to take special note of hills toward the end of the race because these hills split the race into two groups—the leading group going for the win and the chasers trying to pick up the remaining places. In Cycling Fast, Panzera offers 10 tactics for managing hills and staying in the lead:

  • 1. Be near the front for corners that are followed immediately by hills. ‘This helps you prevent being gapped,’ explains Panzera.

  • 2. Shift to easier gears before approaching hills. ‘This prevents dropping the chain off the front chainrings when shifting from the big front ring to the small front ring,’ he notes. “Quickly go around riders who drop their chains.”
  • 3. Close gaps on hills immediately, but with an even, steady pace. ‘Once the group starts riding away on a hill, it is nearly impossible to bring them back,’ Panzera warns.
  • 4. Keep the pace high over the crest of the hill, because the leaders will increase speed faster than the riders at the tail of the group.
  • 5. Relax and breathe deeply to control heart rate on climbs.
  • 6. Dig deep to stay in contact on shorter climbs. ‘Once a group clears the top, it is difficult to catch up on the descent,’ says Panzera.
  • 7. On longer climbs, ride at a consistent pace that prevents overexertion.
  • 8. Always start climbs near the front. If the pace becomes too fast, cyclists will be able to drop through the pack and still recover without losing contact with the pack.
  • 9. Hills are a good place to attack. ‘Know the hill’s distance and location in the course before setting out on an attack or covering an attack by a competitor,’ advises Panzera.
  • 10. Try to descend near the front, but not on the front. Being near the front, as opposed to the back, gives cyclists a greater probability of avoiding crashes.

Panzera also advises noting all the descents before a race begins. ‘Long, straight descents may require work to stay in the draft, and twisty or narrow descents may require technical skills,’ Panzera says. ‘If the descent seems technical in review, it will definitely be technical at race speeds.’

Cycling Fast covers the latest information on new high-tech racing frames, training with a power meter and heart rate monitor, and coordinating tactics as part of a team. Readers can learn how to periodize training and use the numerous tips, charts, and checklists to maximize effort.”

“Toy syndrome” affects cyclists

This is an excerpt from Mastering Cycling. It’s published with permission of Human Kinetics.

“Most cyclists learned to ride bikes as children and haven’t revisited the basic skills of bicycling as adults. “There appears to be a notion among many cyclists that an activity they learned as children requires no further instruction,” says John Howard, three-time Olympian and 18-time national masters cycling champion. “This ‘toy syndrome’ continues to affect cycling.”

Howard stresses the importance of cyclists’ developing more power, comfort, and safety for riding on the streets in traffic, negotiating turns and terrain, and dealing with road hazards, including other cyclists. “Equipment has evolved, speeds have increased, and the rigors of competition have tightened, but the basic techniques aren’t being taught to masters cyclists,” Howard says. In his upcoming book, Mastering Cycling (Human Kinetics, July 2010), Howard addresses the top technical skills that are essential for every cyclist.

Climbing in the saddle
Fast, efficient climbing requires cyclists to recognize the precise moment when action is needed and to know what action to take. “Delaying the decision too long will result in the loss of both speed and momentum,” Howard says. Gear selection and shifting sequence depend on the cyclist’s available power, fitness level, and pitch of the climb. The length of the climb also dictates the approach. “If you are starting to climb a long, gradual hill, use a gear that is comfortable and lets you maintain an rpm of about 90,” Howard explains. “When your cadence begins to slow down, downshift to an easier gear. If you are going to stand on the pedals, you may want to shift up to a higher gear so that you don’t waste energy spinning.”

Climbing out of the saddle
When climbing out of the saddle, the goal is to maintain a consistent heart rate and increase forward momentum. “Gravity will win the battle if you surge on the pedals, pull and push your upper body forward or backward, or worse, pull your upper body up and down, disengaging the important core muscles,” Howard says. “The primary force in moving the bicycle forward is generated at the 3 o’clock and 9 o’clock positions of the cranks.” A common mistake among less-experienced riders is mistiming the thrust of the cranks. Power is dissipated at the top and bottom of the stroke, which is essentially a dead zone when out of the saddle.

Cornering
Cornering requires the ability to quickly judge the elements of a turn, including sloping, curvature, traction, and other factors that limit speed. A bicycle cannot be steered around a curve but must be leaned into the turn. “A cyclist must estimate how much lean is needed to counteract the physical forces that want to project the cyclist and the bicycle in a straight line,” Howard says. “The amount of lean depends on the speed traveled into the turn, the tightness of the turn, and the degree and direction of the road bank.”

Braking
Two approaches to braking exist. One stops the bike quickly to avoid a collision or other hazard, and the other consists of feathering the brakes to slow or stop forward progress. Feathering is the practice of applying light, even pressure on the front and rear brakes and is used in most circumstances. The hot stop should be used when there is no choice but to stop. When hitting the breaks, cyclists should slip to the rear of the saddle to adjust the center of gravity. “The action is accompanied by an approximate bias of two-thirds on the front brake and one-third on the rear brake,” Howard explains. “Cyclists will have very little time to slip back in the saddle and apply the front brakes. When it is done properly, the bike can stop in half the distance that it would normally take.”

Shifting
Maintaining a smooth speed with an efficient cadence prevents overtaxing the muscles and cardiorespiratory system. “Whether you are a competitive or a recreational cyclist, your cadence needs to be as comfortable and smooth as possible, never jerky,” Howard says. He advises shifting one gear at a time and avoiding big gear jumps between ranges. “Cyclists should listen to their bikes and avoid crossing the chain over radical angles, such as the big chain ring and the larger cog in the rear. This will save wear and tear on the drive train and the knees,” Howard adds.”

Cycling expert explains strategies for getting faster

Offers 10 tactics for maximizing hills

This is an excerpt from Cycling Fast. It’s published with permission of Human Kinetics.

Climbs and descents make or break cycling races, according to cycling coach Robert Panzera. In his upcoming book, Cycling Fast (Human Kinetics, June 2010), Panzera covers hills and all elements that can make a cyclist faster, from conditioning to nutrition and key skills.

Panzera says even small climbs make a difference the closer a cyclist gets to the finish line. “Climbs are additive, meaning a 200-foot gain in elevation may not seem like much in the first few miles, but near the finish, it can seem like a mountain.” He advises cyclists to take special note of hills toward the end of the race because these hills split the race into two groups-the leading group going for the win and the chasers trying to pick up the remaining places. In Cycling Fast, Panzera offers 10 tactics for managing hills and staying in the lead:

  • Be near the front for corners that are followed immediately by hills. “This helps you prevent being gapped,” explains Panzera.
  • Shift to easier gears before approaching hills. “This prevents dropping the chain off the front chainrings when shifting from the big front ring to the small front ring,” he notes. “Quickly go around riders who drop their chains.”
  • Close gaps on hills immediately, but with an even, steady pace. “Once the group starts riding away on a hill, it is nearly impossible to bring them back,” Panzera warns.
  • Keep the pace high over the crest of the hill, because the leaders will increase speed faster than the riders at the tail of the group.
  • Relax and breathe deeply to control heart rate on climbs.
  • Dig deep to stay in contact on shorter climbs. “Once a group clears the top, it is difficult to catch up on the descent,” says Panzera.
  • On longer climbs, ride at a consistent pace that prevents overexertion.
  • Always start climbs near the front. If the pace becomes too fast, cyclists will be able to drop through the pack and still recover without losing contact with the pack.
  • Hills are a good place to attack. “Know the hill’s distance and location in the course before setting out on an attack or covering an attack by a competitor,” advises Panzera.
  • Try to descend near the front, but not on the front. Being near the front, as opposed to the back, gives cyclists a greater probability of avoiding crashes.

Panzera also advises noting all the descents before a race begins. “Long, straight descents may require work to stay in the draft, and twisty or narrow descents may require technical skills,” Panzera says. “If the descent seems technical in review, it will definitely be technical at race speeds.”

Cycling Fast covers the latest information on new high-tech racing frames, training with a power meter and heart rate monitor, and coordinating tactics as part of a team. Readers can learn how to periodize training and use the numerous tips, charts, and checklists to maximize effort.