5 steps to creating the perfect core workout program

Send to Kindle

The reason for posting this is that the core is the link between the lower and upper body. If it’s a weak link, performance will suffer despite any other training. Think swimming – what turns your chest on edge while breathing and back again, your core. Running, what stabilizes your back, your core. It’s important and should not be overlooked.

This excerpt is from the book, Delavier’s Core Training Anatomy. It’s published with permission of Human Kinetics. Purchase this book from Human Kinetics and help keep MyTriathlonTraining.com in business!

Set your goals.

The very first step in creating your core workout program is to be specific when defining your goals. Are you working out for these reasons?

  • To get a six-pack
  • To get a slimmer waist
  • To maintain your cardiovascular health
  • and fitness
  • To increase your athletic performance

Often, your goals may be a combination of several of the items listed. However, if you do not define your goals well, it will be difficult to establish an optimal program. Write down your goals on paper so that you can read them before every workout.

Then, you need to quantify your goals. For example, I want to

  • be able to see my abs in 3 months,
  • lose 2 inches off my waist in 2 months, and
  • double the number of sets I can do in 10 minutes to increase my endurance within 15 days.

The time frame and amount of progress for your goals must be realistic. Keep in mind that no one ever progresses as fast as desired. You might often feel that you have hit a plateau. But with a good program, a true plateau is rare. By quantifying your goals and creating monthly milestones, you will more easily be able to gauge your progress. Each step you achieve will serve as motivation to continue exercising. We provide some typical programs in Continue reading

Key Traits of the Highly Disciplined Triathlete

Send to Kindle

This excerpt is from the book, Triathlon Science. It’s published with permission of Human Kinetics.

What are the key characteristics of well-disciplined triathletes? Through extensive work with numerous triathletes over several years, a constellation of traits that defines the champion’s mentality has developed. High-level triathletes do not possess superhuman powers or extraordinary traits limited to a select few. Anyone who wants to excel in triathlon can develop the characteristics that make a champion.

  • Internal discipline and self-direction: Champion triathletes decide from the outset that they are training and competing for themselves, not for the awards, not for the prize money, not for their coaches. Direction and drive need to come from within. The objectives must be chosen because that’s precisely what they want to be doing. Triathletes should ask themselves, “What keeps me swimming, biking, and running? Who am I doing it for?”
  • Commitment to excellence: Does the triathlete set a high standard for herself? Elite triathletes know that to excel at their sport, they must decide to make it a priority in their life, to be the best at what they do. They set challenging yet realistic standards that are specific, and they are honest in evaluating their abilities and the amount of time and energy that they can put into their program.
  • Determination, consistency, organization: Winning triathletes know how to self-energize and work hard on a daily basis. Because they are passionate about what they do, they find it easier to maintain consistency in training and competition. Regardless of personal problems, fatigue, or difficult circumstances, they can generate the excitement and energy needed to do their best.
  • Concentration and focus: Disciplined triathletes have the ability to maintain focus for long periods. They can tune in what’s critical to their performance and tune out what’s not. They can easily let go of distractions and take control of their attention, even under pressure. They put their attention on the aspects of the competition that are within their control and recognize that they can make that choice.
  • Capacity to deal with obstacles: Top triathletes know how to deal with difficult situations. Adversity builds character and becomes an opportunity for learning, opening the way for personal growth and renewal. When elite triathletes know that the odds are against them, they embrace the opportunity to explore the outer limits of their potential. Rather than avoiding pressure they feel challenged by it. They are calm and relaxed under fire, realizing that nervousness is normal and that some nervousness can contribute to performance. Breathing deeply and doing a mental rehearsal of exactly how the race should go can also help triathletes remain calm and relaxed.
  • Enthusiasm and desire, love for the sport: Triathletes who win have a drive, a fire inside that fuels their passion to achieve a key goal, regardless of their level of talent or ability. They begin with a vision, and as they see that vision with more clarity, it becomes more likely to turn into reality. Wherever attention goes, energy flows.

Recognizing and preventing common triathlon-related injuries

Send to Kindle

This excerpt is from the book, Triathlon Anatomy. It’s published with permission of Human Kinetics. Please also read terms of use.

Prevention and Recognition of Injuries

Rest, which by nature triathletes are inherently bad at, is an integral part of the healing process. This is when the body heals itself and gets stronger, whether you are taking a day or a few weeks off from working out or reducing the intensity or volume of your workouts. Prevention techniques that assist with healing, including stretching and specific strengthening, are often overlooked but are an essential part of triathlon training.

Injuries are not an act of nature. They indicate that the athlete has reached a breakdown point at which the body can no longer respond in a positive fashion and heal the injury. The body is pushed past its reparative capabilities and begins to develop signs and symptoms of injury. One of the hallmark symptoms of injury is pain. We all have experienced discomfort when working out, but when is it bad to push through the discomfort? Pain can be defined as an unpleasant sensation that is often associated with damage to the body. What about the sayings “Pain is just weakness leaving the body” and “No pain, no gain”? These proverbs are fun to say but if practiced can lead you down the path of chronic injury.

Any discomfort may be an early warning sign of injury. Discomfort that begins with an activity but goes away as you warm up may be an acceptable symptom you are able to train through with appropriate modifications. However, discomfort that continues through the activity should be a clear warning sign that something is not right, and activity should be discontinued. Discomfort that persists after the activity, does not respond to the basic treatment of RICE (rest, ice, compression, elevation), and affects Continue reading

Establishing training goals on the bike

Send to Kindle

Training Goals

If you want to train more seriously, you need to have a plan. Every time you get on your bike, you are essentially training. The question is whether you’re training effectively or just gaining some conditioning through random episodes of exercise. If you are brand new to the sport, you will see great gains in your riding fitness, skill, and comfort simply by getting out on rides. Your body will respond to the stress of riding and will adapt accordingly. But, you can achieve much more progression if you take the time to establish a plan of action.

Effective training is what this book is all about. Most of us have other commitments—family, work, friends, and so on. That’s why cyclists need to make the most of the time they spend on the bike.

As a performance cyclist, you should always be striving to improve, and you should focus your attention on your cycling goals. If you want to hit the target, you first have to define that target.

What are your goals? Why are you riding your bike? Are you riding in order to stay healthy, to beat a friend up a local climb, or to complete your first century? Every person has a different goal, and that’s the point. You own your goals and all the training that you complete—every pedal stroke, every climb, every Saturday you drag yourself out of bed and onto the road.

Goals can be intimidating because they come with an inherent chance of failure. A goal that is easy to achieve and includes no chance of failure would be ineffective because it goes against the very premise of this book—getting the most out of your riding. The possibility of success or failure is the crux of a good goal. You need to struggle to improve, and the only way to truly struggle is to know that there is a risk of failure. It is the risk, the chance of failure, that drives you toward success.

To help ensure that you establish attainable goals, you should apply the Four Ps of goal setting: personalized, positive, perceivable, and possible.

Personalized means that the goals are your own. Only you can determine what is important, what will motivate you to keep your commitment, and what will give you a sense of accomplishment.

All your goals should be positive. Negative energy sucks! At Disneyland, they live by this philosophy. If you ask the workers when the park closes, they will respond, “The park stays open until 8 o’clock.” You should set a goal to accomplish a desired result rather than to avoid failure. Word your goals so that the outcome is positive.

You need to set goals that have a tangible outcome. Your goals must be perceivable to yourself or to others. This aspect of goal setting is all about accountability.

Finally, your goals need to be realistic but challenging. When you think about your goal, you should have a strong sense that the desired outcome is possible, but by no means assured. You need to believe even with the possibility of failure. This will help you suffer a little longer, struggle just a bit more, and get the most out of your training plan.

Don’t think that goals are only for professionals or racers. EVERY RIDER NEEDS GOALS. Think of goals the same way you think of the rest of the training program. Training is all about progression, and goals should follow suit. They start with more obtainable outcomes. But with each accomplishment, the task becomes more difficult. Each goal builds on the last in a stepwise fashion (figure 1.1), until you find yourself faced with your ultimate accomplishment.

Be sure to write down your goals. For each time frame—short, medium, and long—fill in your primary and secondary goals (figure 1.1). Again, these goals can be anything. They should be whatever motivates you to train when you might feel like flicking on the TV instead. There is something about actually writing down your goals. This brings them outside your brain and into the real world—an accountable world.

Training is all about commitment, discipline, and perseverance. It is a slow grind, and sometimes you feel as though you’re going backward instead of forward. But if you stick to your program, you WILL get better. Writing down your goals is the first barrier to overcome.

Goals will perpetually be included in your training program. Every time you reach a goal, you can have a little celebration, even if it is internal. Treat yourself to a double half-caf, mocha chai latte if that’s your thing. As soon as you are finished basking in the glory of the accomplishment, write down a new set of goals. Stay on target!

This excerpt is from the book, Fitness Cycling. It’s published with permission of Human Kinetics.

The Predictive Power of vV·O2max

Send to Kindle

This excerpt is from the book, Running Science. It’s published with permission of Human Kinetics.

To begin to comprehend the lack of predictive power of V·O2max in contrast to that of vV·O2max, consider an extremely well-trained runner who happens to have large, clunky feet. Such a runner will tend to have a high V·O2max because of the demanding training he or she has been undertaking, and the clunky feet will add to V·O2max, driving it higher compared with a similarly trained runner with small feet. Having to move those large feet down the road at high rates of speed will call for extremely high rates of oxygen production. However, large feet will not make the runner competitive; in fact, they will cause this runner to reach V·O2max at a rather modest speed since so much oxygen is being used to move the big feet along. Thus, this runner will have a high V·O2max but relatively poor running economy, and thus a moderate vV·O2max and moderate performances. As usual, vV·O2max will be more reflective of performance potential than V·O2max.

This big-foot scenario is an extreme example of why vV·O2max predicts performance quite well. It is important to bear in mind that the same situation prevails for runners in general who have modest to poor running economy for reasons other than big feet. Such athletes might have high levels of V·O2max. If running economy is subpar, however, any particular running speed will elicit an unusually high rate of oxygen consumption, and V·O2max will be reached at relatively mediocre running speeds. Thus, performance potential will be below what might be expected from the determination of V·O2max alone.

The power of vV·O2max to predict performance is illustrated in a study carried out at Lynchburg College in Virginia in which 17 well-trained distance runners (10 males and 7 females) underwent physiological testing and then competed in a 16K race. Laboratory tests determined V·O2max, vV·O2max, running economy, percentage of maximal oxygen uptake at lactate threshold (%V·O2max at lactate threshold), running velocity at lactate threshold, and peak treadmill velocity. The Lynchburg researchers found that among all the measured physiological variables, vV·O2max had the highest correlation (r = –.972) with 16K performance, while %V·O2max at lactate threshold had the lowest correlation (r = .136). Overall, vV·O2max was found to be the best predictor of 16K running time, explaining all but just 5.6 percent of the variance. The Virginia scientists concluded that vV·O2max is the best predictor of endurance-running performance because it integrates maximal aerobic power with running economy.

In a separate study carried out at Fitchburg State College in Massachusetts, 24 female runners from four different high school teams competing at the Massachusetts 5K State Championship Meet were tested in the laboratory. These tests revealed a high correlation between vV·O2max and 5K performance (r = .77). In contrast, the correlation between V·O2max and 5K speed was lower, and running economy at a slow velocity (215 m per minute) was poorly correlated with 5K outcome. Note that economy at race-like speeds is predictive of race competitiveness, while economy at slow velocities is not necessarily linked with racing capacity (another argument against conducting a lot of training at medium to low speeds).

In a classic study carried out at Arizona State University in Tempe, vV·O2max was found to be a primary determinant of 10K performance in well-trained male distance runners. Among these runners, the variation in 10K running time attributable to vV·O2max exceeded that due to either V·O2max or running economy.

Impact of Training on vV·O2max and Running Economy

French researchers Veronique Billat and Jean-Pierre Koralsztein have concluded that vV·O2max predicts running performances very well at distances ranging from 1,500 meters to the marathon. They also noted that vV·O2max has similar predictive power in cycling, swimming, and kayaking; of course, vV·O2max would have to be determined for each sport since running vV·O2max does not carry over to other activities. Billat and Koralsztein also discovered that training that emphasizes intervals conducted at vV·O2max can be extremely productive for distance runners.

In one study, Billat and Koralsztein asked eight experienced runners to take part in 4 weeks of training that included one interval session per week at vV·O2max. The athletes specialized in middle- and long-distance running (1,500 m up to the half marathon), and their average V·O2max was a fairly lofty 71.2 ml • kg-1 • min-1. This program included six workouts per week, including four easy efforts, one session with work intervals at vV·O2max, and one session at lactate-threshold speed with longer intervals. Total distance covered per week was about 50 miles (~ 80 km). Over the 4-week period, the runners’ weekly training schedules were formatted in the following way:

  • Monday: One hour of easy running at an intensity of just 60 percent of V·O2max.
  • Tuesday: A 4K warm-up and then vV·O2max interval training consisting of 5 × 3 minutes at exactly vV·O2max. During the 3-minute work intervals, the runners covered an average of 1,000 meters (.62 mi; their vV·O2max tempo was 72 seconds per 400 meters). Recovery intervals were equal in duration (3 minutes), and the cool-down consisted of 2K of easy running. Overall, the workout was a 4K warm-up, 5 × 3 minutes at vV·O2max, with 3-minute easy jog recoveries, and a 2K cool-down.
  • Wednesday: 45 minutes of easy running at an intensity of 70 percent of V·O2max.
  • Thursday: 60 minutes of easy running at 70 percent of V·O2max.
  • Friday: A session designed to enhance lactate threshold composed of a warm-up and then two 20-minute intervals at 85 percent of vV·O2max; for example, if vV·O2max happened to be 20 kilometers per hour (5.55 m per second), the speed for these intervals would be .85 × 20 or 17 kilometers per hour (4.72 m per second). A 5-minute, easy jog recovery was imposed between the 20-minute work intervals, and a cool-down followed the second work interval.
  • Saturday: Rest day with no training at all.
  • Sunday: 60 minutes of easy running at an intensity of 70 percent of V·O2max.

After 4 weeks, the results were amazing, to say the least. Although maximal aerobic capacity (V·O2max) failed to make any upward move at all, vV·O2max rose by 3 percent from 20.5 kilometers per hour to 21.1 kilometers per hour. In addition, running economy improved by a startling 6 percent. This enhancement of economy was probably behind most of the uptick in vV·O2max since it lowered the economy line on the graph of oxygen consumption as a function of running speed and thus pushed vV·O2max out to the right for the French runners.

After the 4 weeks of training, lactate threshold remained locked at 84 percent of vV·O2max. However, since vV·O2max was 3 percent higher at the end of the training period, running velocity at lactate threshold had also increased by a similar amount. Most of the key variables associated with endurance performance—vV·O2max, economy, and lactate-threshold speed—had advanced in just 4 weeks.

The 6 percent gain in economy associated with vV·O2max training was particularly impressive. A handful of training manipulations have been linked with upgraded economy, and the gains in economy have usually been far below the one documented by Billat and Koralsztein’s research. A classic Scandinavian hill-running study (see chapter 25) detected only a 3 percent increase in running economy, even though the hill training was conducted for three times as long (12 weeks versus the 4 weeks needed by the French runners in Billat and Koralsztein’s study). Similarly, improvements in economy associated with strength training have usually been in the 3 percent range, also after fairly long periods of training. It appears that vV·O2max training can work economy magic in as little as 4 weeks, especially for those runners who have not carried out vV·O2max work previously.

Why marathon swimming is so unique and rewarding

Send to Kindle

This excerpt is from the book, Open Water Swimming. It’s published with permission of Human Kinetics

Preparing for Marathon Swims

With over 70 percent of the world covered in water, and stunningly gorgeous lakes, seashores, channels, rivers, and islands dotting the earth, it is not surprising that people eventually took to marathon Swimming. The catalyst of marathon Swimming was when Captain Matthew Webb became the first person to successfully swim nonstop from England to France in 1875. His exploit dramatically enabled endurance athletes to think the impossible was within their reach.

At its most fundamental level, marathon Swimming is a daring personal challenge in which swimmers pit themselves against the elements and experience a wide range of emotions that fluctuates between despair and relief. Marathon swimmers vividly remember their final stroke in the water after Swimming for hours and hours on end. Their first step back on terra firma after struggling in relentlessly difficult conditions is the point when exhaustion turns to exhilaration. This love–hate relationship with the open water—strange as it may sound—creates the allure that draws endurance athletes to the waterways of the world.

The Marathon Swimmer

Marathon swimmers tend to be doggedly persistent people who are also successful in other aspects of their lives. They ply their trade far away from the media attention in arenas where there are usually no fans. They often achieve their greatest success on a barren shoreline where only their support crew can witness their victory. But their sense of accomplishment runs deep; their inner satisfaction is empowering and uplifting – and will remain with them throughout their lives.

Among the world’s marathon swims, the most iconic and well-known waterway is the English Channel. Thousands of people have attempted the 21-mile (33.8K) swim since the first documented attempt in 1872. Yet the number of successful English Channel swimmers remains fewer than half of the number of people who have climbed Mount Everest since it was first scaled in 1953.

Of the 1,189 people who have crossed the English Channel through 2010, 33 percent have been women and 67 percent have been men, although the relative percentage of women who cross the English Channel has increased over time (41 percent during the 1990s).

The average one-way time is 13 hours and 31 minutes, and times range from the world record of 6 hours and 57 minutes to a patiently plodding 26 hours and 50 minutes.

The English Channel swimmers are a global mix, hailing from 63 countries. The average age of the successful channel swimmer is 31, but their ages range from 11 to 70 years, including 50 people who crossed it after their 50th birthday and are members of the Half Century Club. With a growing number of members in the Half Century Club around the world (25 in the Catalina Channel, 32 in the Strait of Gibraltar, 175 in the Rottnest Channel, and 51 in the Manhattan Island Marathon Swim), age seems to be no impediment nowadays in the marathon Swimming world.

Marathon Swimming requires discipline of the highest order, demanding long hours spent training often alone and under harsh conditions. But it is also a sport where the concept of team is paramount due to the essential roles played by the escort pilot, coach and support crew and where camaraderie and collegiality exist in abundance.

Marathon swimmers experience nature in the most tactile way possible: enveloped in water, surrounded by marine life, and interacting with a dynamically changing environment in nothing but swimwear and goggles. It is no wonder that marathon swimmers across borders and cultures often form profound friendships; they share experiences that are often difficult to endure and difficult to explain.

Marathon swimmers experience nervousness before a swim and a sense of accomplishment afterward. They know the sting of a jellyfish and of cold water. They understand problems with leaking goggles, removing lanolin, and breathing boat exhaust. They appreciate the feeling of Swimming powerfully in calm, clear water in daylight hours and of being uncomfortably disoriented in rough water at night.

The collegial atmosphere in the marathon Swimming world is a function of these shared experiences. As the athletes come out of the water exhausted beyond comprehension, punished into submission by the elements, some barely able to stand and some nearly unable to talk, they share smiles, looks, nods, winks, hugs, and handshakes that speak volumes about their mutual respect for each other and their escort boat crews.

Common combination workouts to prepare you for race day

Send to Kindle

This excerpt is from the book, Triathlon Science. It’s published with permission of Human Kinetics

Combination Workouts
Combination workouts bring two or more disciplines into a single workout, either for convenience or for specific race preparation. The most common combination workouts are swim to bike, bike to run (usually called a brick), and run to bike, depending on the goals of the triathlete and time of year.

Swim-to-Bike Workouts

A small segment of the triathlon population experiences some lightheadedness when transitioning from the prone position of swimming to the standing position of running, as triathletes do when moving from the swim to the first transition. Another small segment of the triathlon population experiences unusual leg fatigue going from swimming to running and then cycling.For these triathletes, one strategy is to set up a bike on a trainer on the pool deck.

Triathletes can begin with an easy swim of 500 meters or so and then transition to the trainer for an easy spin of around 10 minutes. They repeat this sequence two to four times in a single workout.

If the triathlete is not adapting or feels so lightheaded that passing out is a possibility, a doctor should be consulted to be certain that no medical issues are present. Depending on the severity of the problem, triathletes may want to be checked out before doing any swim-to-bike workouts.

As triathletes adapt to the easy swim-to-bike workouts on the pool deck, they should increase intensity by following a fast swim segment with an easy ride. The second round should be an easy swim followed by a faster ride. As adaptation to the transition between swimming and cycling continues, the triathlete can increase the intensity of both the swim and the ride.

Many triathletes do swim-to-bike workouts as a matter of convenience, particularly on weekends. Many do a pool workout and then head straight to a bike workout. With workouts sequenced in this manner, they can decide which workout or workouts should include intensity. As triathletes approach race day, they may want a swim-to-bike workout as a dress rehearsal for race day.

Bike-to-Run Workouts

Swim-to-bike and run-to-bike workouts are often called combination, or combo, workouts. The bike-to-run workout is often called a brick. Although the history of the word is not clear, one theory is that the name was given to the workout because when triathletes go from fast cycling to running, their legs feel like bricks.

To help triathletes adapt to the change of body movement and muscle recruitment from cycling to running, and the feeling that this change produces, aerobic brick workouts are a good place to start. Some prefer to do brick workouts every week throughout the training plan, but others limit brick workouts to once per month, perhaps as a workout during a recovery week. Others limit brick workouts to certain macrocycles. No standard has been set about how often to perform brick workouts, and some triathletes appear to make this adaptation better than others do.

In one study on elite international Olympic-distance racers, the intensity of cycling did not have an adverse effect on neuromuscular control and running economy. Even moderately trained triathletes experienced little influence on running muscle recruitment after cycling. These studies may lead the reader to believe that experience in the sport of triathlon eliminates any effect of cycling on running economy and muscle recruitment, but that is not true. A third study found that despite years of training, some elite triathletes do experience changes in leg movement and muscle recruitment in running after cycling. The effects of cycling on neuromuscular control and running economy appear to vary among people.

When deciding how many bricks to include in a program, triathletes should consider their experience level, goal race distance, and race results. Slower sprint- and Olympic-distance racers are more likely to do short brick workouts. For faster sprint- and Olympic-distance racers, brick workouts are often in the range of 50 to 100 percent of race distance. For half-Ironman racers, bricks are often 25 to 50 percent of race distance. For Ironman racers, bricks become less important because the need for blazing fast transitions is not an issue except for the top triathletes.

For Ironman racers, the benefit-to-risk considerations of long brick workouts need to be evaluated. For example, how much value is gained from doing a 60-mile (100 km) bike ride followed by a 10- to 13-mile (16 to 20 km) run? Would this triathlete be better served by entering a half-Ironman race and using that race as part of the training strategy? Is the triathlete prone to running injuries? What is expected to be gained from the brick workout? Individual athlete strengths and weaknesses need to be considered when making training decisions. The bias should be toward conservative undertraining so that the triathlete remains injury free and mentally sharp.

Intermediate and advanced sprint- and Olympic-distance racers often complete brick workouts every 3 to 4 weeks. These workouts are done at the same intensity as other workouts in the macrocycle. The intensity portion of the brick can be structured in multiple ways:

– Aerobic ride followed by an aerobic run.
– Aerobic ride followed by a run that includes some portion at current training-cycle intensity. This run can be a steady effort or broken into intervals.
– Ride that includes some portion at current training-cycle intensity. This ride can be a steady effort or broken into intervals and is followed by an aerobic run.
– Ride followed by a run in which both disciplines include some portion at intensity.

Run-to-Bike Workouts

Duathlon T1 is easier to practice than triathlon T1 for most triathletes. Any yard or garage can be turned into a mock T1 area. The duathlete can go for the assigned run, return home, complete the transition, and head out on a bike ride.

The intensity for any run-to-bike workout should match the intensity of the rest of the workouts in that macrocycle. As workout intensity increases with an approaching race day, race-pace run-to-bike workouts can be included in the mix. Examples include the following:

– Run 5 kilometers, doing the last 1.5 kilometers at race pace. Immediately transition to an easy ride of 10 kilometers.
– Run 2.5 kilometers at aerobic intensity. Transition to a 15-kilometer negative-split ride. Begin at aerobic intensity for 7.5 kilometers and then ride the last 7.5 kilometers at close to race intensity. Faster duathletes can finish at zone 3 to 5a intensity and build from zone 3 to 5b in the second half of the ride.
– Run 5 kilometers, doing the last 1.5 kilometers at race intensity. Immediately transition to a ride of 15 kilometers. Make the first 7.5 kilometers at race intensity and finish at aerobic intensity.

The design of the workout should have intent for the duathlete. That intent may be transition practice, muscle recruitment when changing disciplines at an easy pace, or race-pace rehearsal. New and intermediate duathletes may consider making the workout distances less than race distances. Top duathletes may want the distances to be the same as race distances. They may perform only a portion of the workout at race pace so that they save the best performance for race day.

Developing a plan for training for a triathlon

Send to Kindle

I own most of the “Anatomy” series from Human Kinetics. They are well illustrated, easy to understand, to the point, and all-around excellent references. Now this new one is offered as an eBook.

This excerpt is from the book, Triathlon Anatomy eBook. It’s published with permission of Human Kinetics

Training Plan development

There is a lot of science behind optimal training plan development for triathletes. As multisport
participation becomes more popular, the research literature on best practices and training methodologies expands at a staggering rate. Although the science of effective training is certainly important, so is the art of developing a training plan.

Triathlon coaching has been an area of explosive growth over the past decade. A range of professional triathlon coaching certifications is now available, and scores of coaching companies, large and small, have sprung up to meet the growing demands of this burgeoning field. Developing a multisport training plan can be daunting, and as athletes attempt to train effectively for three sports, they discover that a knowledgeable coach can save them time and headaches by shortening the learning curve. But although coaching does involve the science of training, it’s also important not to neglect the art of training an athlete. After all, if human performance improvement was as simple as adding 1 and 1 to equal 2, everyone would be getting faster and competing at a similar level. The truth is that each athlete is an experiment of one, and a good coach will discover the balance of training in order to help the athlete reach his goals while remaining healthy and injury free. Hence, the art of training.

In many ways, a triathlon coach is like a chef. Every chef has access to common ingredients. It’s how they mix, prepare, and then present the ingredients to create the dish that matters. And let’s face it: Some dishes are great while others are not so great. It’s the same with triathlon coaching and how the coach works with the athlete, addressing individual strengths and weaknesses in order to develop the ideal program for achieving goals.

Let’s begin our discussion of developing a training plan by exploring the basic ingredients that all triathlon coaches have at their disposal. Planning and strategic oversight of a program are important, and when it comes to designing a training plan, the first step is to determine your ultimate goal for that season. We’ll call this your A race. Next, you’ll need to determine races of lesser importance you’ll use in order to gain competitive experience and develop your race legs. Many elite athletes use these B and C priority events as hard training days to race themselves into shape, both physically and mentally.

Once the race schedule is mapped out and the commitment is made, it’s time to start developing your plan, working backward from your A race and using the principle of periodization. Your training ingredients include the variables of intensity, duration, and frequency; the mixture of these components will enable you to develop an effective plan.

For a more nonlinear approach to periodized training, focus on certain energy systems for periods of 4 to 6 weeks, while also incorporating training intensities to bolster other systems simultaneously, because no one energy system is developed at the exclusion of others. For example, an aerobic base development phase will also include some bouts of short, intense work that targets the anaerobic energy system. This makes the transition to a more specific block of hard training much easier while lowering the risk of overtraining and injury.

In addition to cardiorespiratory and sport-specific training, most coaches and athletes now agree that supplemental strength and flexibility training is crucial for enhanced performance and, more important, long-term health and well-being. Supplementary resistance work should be done year-round using a selection of exercises found in this book, with an approach that complements the seasonal training needs of the athlete. For example, when an athlete is in season, the focus of a strength training routine is mostly maintenance and injury prevention. On the other hand, during the preseason, the training focus is more on developing strength and a biomechanically sound foundation.

Table 3.1 shows a sample preseason program used by a beginner to intermediate-level triathlete with one to three years of experience who is preparing for an Olympic-distance triathlon. The emphasis is on aerobic base and basic strength development, with a total training commitment of 10 to 12 hours per week.

From this example, you’ll notice that each sport discipline is trained at least three times during the week in addition to three strength training sessions. Athletes should perform sport-specific training before strength work in order to ensure good form and enable solid development of technique. Muscles that are tired because of resistance training can foster poor movement patterns when swimming, cycling, and running, impeding efficiency and wasting energy.

With such a wide variety of strength training exercises from which to choose, it’s imperative that you have a focused strategy for continual improvement. Using the expert help of a coach or certified personal trainer, choose from the recommended exercises in this book to create a plan tailored to suit your individual needs.